Implantable cardiac pacemakers restore normal heart rhythm by delivering external electrical pacing to the heart. The pacemaker software is life-critical as the timing of the pulses determine its ability to control the heart rate. Recalls due to software issues have been on the rise with the increasing complexity of pacing algorithms. Open-loop testing remains the primary approach to evaluate the safety of pacemaker software. While this tests how the pacemaker responds to stimulus, it cannot reveal pacemaker malfunctions which drive the heart into an unsafe state over multiple cycles. The safety and efficacy of pacemaker software should be considered in closed-loop with the physical environment of the heart. Formal Methods-based Model Checking has been an effective method for mathematically verifying all possible executions of the closed-loop system against safety properties. In this work, we used Timed automata to develop a series of heart models at different abstraction levels, which capture the timing behavior of the heart. By maintaining the Timed Simulation relation between each abstraction level, properties satisfied by the abstract model also hold in the actual system. With a Counter-Example-Guided Abstraction and Refinement (CEGAR) framework we can verify pacemaker efficiently without sacrificing accuracy.
Skip Nav Destination
ASME 2013 Conference on Frontiers in Medical Devices: Applications of Computer Modeling and Simulation
September 11–13, 2013
Washington, DC, USA
Conference Sponsors:
- Bioengineering Division
ISBN:
978-0-7918-5600-0
PROCEEDINGS PAPER
Multi-Scale Modeling of the Heart for Closed-Loop Evaluation of Pacemaker Software Available to Purchase
Zhihao Jiang,
Zhihao Jiang
University of Pennsylvania, Philadelphia, PA
Search for other works by this author on:
Rahul Mangharam
Rahul Mangharam
University of Pennsylvania, Philadelphia, PA
Search for other works by this author on:
Zhihao Jiang
University of Pennsylvania, Philadelphia, PA
Rahul Mangharam
University of Pennsylvania, Philadelphia, PA
Paper No:
FMD2013-16192, V001T10A051; 2 pages
Published Online:
February 19, 2014
Citation
Jiang, Z, & Mangharam, R. "Multi-Scale Modeling of the Heart for Closed-Loop Evaluation of Pacemaker Software." Proceedings of the ASME 2013 Conference on Frontiers in Medical Devices: Applications of Computer Modeling and Simulation. ASME 2013 Conference on Frontiers in Medical Devices: Applications of Computer Modeling and Simulation. Washington, DC, USA. September 11–13, 2013. V001T10A051. ASME. https://doi.org/10.1115/FMD2013-16192
Download citation file:
13
Views
Related Proceedings Papers
Related Articles
Impacts of Wireless Power on Medical Device Design Safety
J. Med. Devices (June,2009)
Simulation of Mechanical Environment in Active Lead Fixation: Effect of Fixation Helix Size
J Biomech Eng (June,2011)
Simulation of LV Pacemaker Lead in Marginal Vein: Potential Risk Factors for Acute Dislodgement
J Biomech Eng (March,2011)
Related Chapters
On the Exact Analysis of Non-Coherent Fault Trees: The ASTRA Package (PSAM-0285)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)
A Bayesian Approach to Setting Equipment Performance Criteria (PSAM-0438)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)
ISTQB Test Process Evaluation by Using TMMI Model
International Conference on Computer Technology and Development, 3rd (ICCTD 2011)