The tibiofemoral joint is a complex structure and its overall mechanical response is dictated by its numerous substructures at both macro and micro levels. An in-depth understanding of the mechanics of the joint is necessary to develop preventative measures and treatment options for pathological conditions and common injuries. Finite element (FE) analysis is a widely used tool in joint biomechanics studies focused on understanding the underlying mechanical behavior at joint, tissue and cell levels [1]. Studies, regardless of their purpose (descriptive or predictive), when employing FE analysis, require anatomical and mechanical data at single or multiple scales. It is also critical that FE representations are validated and closely represent specifics of the joint of interest, anatomically and mechanically. This is an utmost need if these models are intended to be used to support clinical decision making (in surgery or for rehabilitation) and for the development of implants.

This content is only available via PDF.
You do not currently have access to this content.