The objective of this paper is to establish a concise structural model of the human musculoskeletal system (HMS) that can be applied to an exercise therapy that treats malfunctions or distortions of the human body. There exist a number of traditional exercise therapy methods in Japan and China, but any systematic approaches for learning, coaching or training are not found to the best of the author’s knowledge. Among such approaches, we deal with an exercise therapy called Somatic Balance Restoring Therapy (SBRT) in which a patient executes a series of non-invasive and painless motions in face-up/down laid posture. Although thousands of results have been piled up in a fixed-format data base, justification for the SBRT has not been provided in bio/mechanical engineering sense. The purpose of modeling is a first step for this holistic approach. For such reasons, the model must be useful and uncomplicated for therapists to identify the problematic areas of the human body with adequate visualization while maintaining a theoretical thoroughness in mechanics or dynamics. To bridge multi-body dynamics and the SBRT, we have utilized a human body model with a collection of joint connected 15 rigid bodies in a topological tree configuration as used for humanoid robot with 80 Degrees-of-Freedom (DOF). In order to achieve the purpose stated above, we have developed a static force/torque balance equation for each body element. In addition, we will describe modeling processes, derivation of static equations, and estimation of parameters/states and verification based on the analysis of the FPS experimental data, and contact forces are parameterized with quantitative values to be given by the Force Plate System (FPS), installed at CARIS at the University of British Columbia (UBC).

This content is only available via PDF.
You do not currently have access to this content.