Numerical models of the heart’s mitral valve are being used to study valve biomechanics, facilitate predictive surgical planning, and are used in the design and development of repair devices. These models have evolved from simple two-dimensional approximations to complex three-dimensional fully coupled fluid structure interaction models. However, to date these models lack direct one-to-one experimental validation. Moreover, as computational solvers vary considerably based on researcher implementation, experimental benchmark data are critically important to ensure model accuracy. To this end, a multi-modality in-vitro pulsatile left heart simulator was used to establish a database of geometric and hemodynamic boundary conditions coupled with resultant valvular and fluid mechanics.

This content is only available via PDF.
You do not currently have access to this content.