Patient-specific models have been recently applied to investigate a wide range of cardiovascular problems including cardiac mechanics, hemodynamic conditions and structural interaction with devices [1]. The development of dedicated computational tools which combined the advances in the field of image elaboration, finite element (FE) and computational fluid-dynamic (CFD) analyses has greatly supported not only the understanding of human physiology and pathology, but also the improvement of specific interventions taking into account realistic conditions [2, 3]. However, the translation of these technologies into clinical applications is still a major challenge for the engineering modeling community, which has to compromise between numerical accuracy and response time in order to meet the clinical needs [4]. Hence, the validation of in silico against in vivo results is crucial. Finally, if the development of novel tools has recently attracted big investments [5], it has not been similarly easy to dedicate funds and time to test the developed technologies on large numbers of patient cases.

This content is only available via PDF.
You do not currently have access to this content.