The development of biodegradable implants has had a beneficial effect on in-vivo treatment of patients with various bone ailments. Currently, biodegradable implants are mainly made of polymers, such as PLA or PMMA. However, these polymer based implants usually have unsatisfactory mechanical strength and are prone to considerable amounts of wear [1]. An alternative to polymers is a biodegradable magnesium-calcium (Mg-Ca) alloy which has the ability to gradually dissolve and absorb into the human body after implantation. The similar properties of Mg to bone indicate it is an ideal implant material to minimize the damaging effects of stress shielding. The critical issue that hinders the application of Mg implants is poor corrosion resistance to human body fluids. Sequential laser shock peening (LSP) of a biodegradable Mg-Ca alloy was initiated to create a superior surface integrity for improving implant performance. LSP is an innovative surface treatment method to impart deep compressive residual stresses across a broad area of an implant. The high compressive residual stress has great potential to slow corrosion rates and improve wear and fatigue performance. Also, LSP produces a unique surface topography. Structural surface modifications are an effective way to alter the implant/tissue interface in order to improve biocompatibility.
Skip Nav Destination
ASME 2010 5th Frontiers in Biomedical Devices Conference
September 20–21, 2010
Newport Beach, California, USA
Conference Sponsors:
- Nanotechnology Institute
ISBN:
978-0-7918-4945-3
PROCEEDINGS PAPER
Characterization and Modification of Surface Topography by Sequential Laser Peening Biodegradable Magnesium-Calcium Alloy
M. P. Sealy,
M. P. Sealy
The University of Alabama, Tuscaloosa, AL
Search for other works by this author on:
Andrew Guo,
Andrew Guo
The University of Alabama, Tuscaloosa, AL
Search for other works by this author on:
Y. B. Guo
Y. B. Guo
The University of Alabama, Tuscaloosa, AL
Search for other works by this author on:
M. P. Sealy
The University of Alabama, Tuscaloosa, AL
Andrew Guo
The University of Alabama, Tuscaloosa, AL
Y. B. Guo
The University of Alabama, Tuscaloosa, AL
Paper No:
BioMed2010-32061, pp. 99-100; 2 pages
Published Online:
July 16, 2013
Citation
Sealy, MP, Guo, A, & Guo, YB. "Characterization and Modification of Surface Topography by Sequential Laser Peening Biodegradable Magnesium-Calcium Alloy." Proceedings of the ASME 2010 5th Frontiers in Biomedical Devices Conference. ASME 2010 5th Frontiers in Biomedical Devices Conference and Exhibition. Newport Beach, California, USA. September 20–21, 2010. pp. 99-100. ASME. https://doi.org/10.1115/BioMed2010-32061
Download citation file:
5
Views
Related Proceedings Papers
Related Articles
Fabrication and Characterization of Surface Texture for Bone Ingrowth by Sequential Laser Peening Biodegradable Orthopedic Magnesium-Calcium Implants
J. Med. Devices (March,2011)
A Novel Shock Processing by High-Intensity Pulsed Ion Beam
J. Manuf. Sci. Eng (June,2009)
A Review on Corrosion and Wear of Additively Manufactured Alloys
J. Tribol (May,2021)
Related Chapters
Synthesis and Characterization of Carboxymethyl Chitosan Based Hybrid Biopolymer Scaffold
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
Surface Analysis and Tools
Tribology of Mechanical Systems: A Guide to Present and Future Technologies
Advantages of Chitosan as Drug Delivery Systems
Chitosan and Its Derivatives as Promising Drug Delivery Carriers