Shock wave lithotripsy (SWL) has been used to treat kidney stones for decades. However, there is growing recognition that shock waves induces trauma to kidney tissue [1, 2]. The poor understanding of stone comminution mechanisms means that the design of new lithotripters is principally a practice of empiricism [3]. A mechanistic understanding of stone comminution would provide a criterion to develop new lithotripsy systems. In this work, a three-dimensional finite-difference time-domain (FDTD) solution to the linear elastic equations was employed [4] to investigate the stress and displacement fields of kidney stones subject to lithotripsy shock waves. The kidney stone models were obtained from micro-computed tomography images (resolution of 20 μm) and have diameters from 2 mm to 5 mm.

This content is only available via PDF.
You do not currently have access to this content.