For centuries, surgeons have heavily relied on scalpels and sutures to reshape cartilage. Reshaping the cartilaginous frameworks of the head and neck requires open surgery to counteract the intrinsic elastic forces that resist deformation. Recently, non-surgical techniques that use radio frequency or laser sources to reshape cartilage have been developed, but they rely on heat generation and may produce thermal injury [1,3]. We recently developed new techniques to reshape cartilage called Electro-Mechanical Reshaping (EMR) that combines mechanical deformation with the application of low-level DC electric fields. Shape change is driven by electrochemical reactions that occur between electrodes placed in contact with the mechanically deformed specimen. Previous studies have shown that EMR of cartilage can be accomplished using graphite and aluminum surface electrodes [2,4]. In this study, EMR was further investigated with the use of needle electrodes that can be inserted into the mechanically deformed specimen rather than on the surface. Needle electrodes offer several advantages to surface electrodes because they can be incorporated into percutaneous surgical devices and instrumentation, deliver electric energy precisely to the site of desired shape change, and by design limit the spatial extent of tissue injury.

This content is only available via PDF.
You do not currently have access to this content.