Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Date
Availability
1-1 of 1
Spatiotemporal phenomena
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Proc. ASME. AJTEC2011, ASME/JSME 2011 8th Thermal Engineering Joint Conference, T10001, March 13–17, 2011
Paper No: AJTEC2011-44024
Abstract
Thermal therapy, destroying tumor in situ by localized heating, is emerging as one of the treatment options for benign and localized tumors. Despite many advantages of thermal therapy, its clinical application is still limited due to the lack of a reliable intraoperative monitoring technique of the thermal lesion. To address this challenge, an intraoperative thermometry technique has been proposed using the temperature-dependent fluorescence of quantum dots (QDs). Its feasibility is recently demonstrated by monitoring the spatiotemporal temperature during gold nanoshell-mediated heating. In the present study, the effects of tissue-light interaction on the QD-mediated thermometry were investigated both experimentally and theoretically so that the technique can be extended to in vivo applications. As for experimental investigation, the QD fluorescence through tissue phantom was characterized with varying the thickness of the phantom over a temperature range relevant to thermal therapy. The results showed that the QD fluorescence through tissue phantom was still linearly correlated to the local temperature, but the slope of the correlations decreased with the phantom thickness. As for theoretical investigation, the radiative transfer equation was reduced to the diffusion approximation, and the QD fluorescence through tissue phantom was predicted by numerically solving the diffusion approximation. The results confirmed that the diffusion approximation could describe the tissue-light interaction for the QD-mediated thermometry but further research is still required to improve the accuracy of the prediction.