Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Date
Availability
1-15 of 15
Heat sinks
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Proc. ASME. AJTEC2011, ASME/JSME 2011 8th Thermal Engineering Joint Conference, T10128, March 13–17, 2011
Paper No: AJTEC2011-44563
Abstract
This study experimentally assesses single phase heat transfer characteristics of a shallow rectangular microchannel heat sink whose surface is enhanced with copper nanowires (CuNWs). The hydraulic diameter of the channel is 672 μm and the bottom wall is coated with Cu nanowires (CuNWs) of 200 nm in diameter and 50 μm in length. CuNWs are grown on the Cu heat sink by electrochemical synthesis technique which is inexpensive and readily scalable. The heat transfer and pressure drop results of CuNWs enhanced heat sink are compared with that of bare copper heat sink using deionized (DI) water as the working fluid at Reynolds Number (Re) ranging from 106–636. The experimental results indicate an enhancement in Nusselt Number (Nu) at all Re with a maximum enhancement of 24% at Re = 106. The enhanced thermal performance is attributed to two properties of Cu nanowire arrays — improvement in surface wettability characteristics and increased heat transfer surface area.
Proceedings Papers
Proc. ASME. AJTEC2011, ASME/JSME 2011 8th Thermal Engineering Joint Conference, T10079, March 13–17, 2011
Paper No: AJTEC2011-44178
Abstract
Entropy generation rate has been the attraction of research, since it provides information on the thermodynamic irreversibility associated with the thermal systems. The exergy distraction in the thermal system increases entropy generation rate while lowering the second law efficiency of the thermal system. The heat transferring devices, such as heat exchangers, operates better when temperature difference between the transferring device and the heat sink is maintained high. In addition, the use of porous material in these devices enhances the heat transfer rates due to the achievement of high heat transfer coefficients. However, the presence of the porous material also increases the pump power because of the high pressure drop in the flow system. This increases the operational costs. Consequently, entropy generation rate due to pressure drop needs to be minimized to reduce the cost; however, heat transfer rates from the thermal system needs to be enhanced to improve the thermal performance of the heat transferring device. Therefore, a balance between the entropy generation rates due to pressure drop and heat transfer needs to be attained to achieve optimum operating conditions of such devices. To investigate the optimum operating conditions, the forced convection problem about inclined surfaces (or wedges) in saturated porous medium is considered. The flow in the porous medium is described by the Darcy-Brinkman momentum equation. An exact analytical solution of the governing equations using Kummer function is developed for the velocity, temperature, Nusselt Number, and entropy generation rate for the case where the free stream velocity and wall temperature distribution of the inclined surface vary according to the same power function of distance x , along the plate. It is demonstrated that the entropy generation number is weakly dependent on the Brinkman-Darcy number for forced convection flow, which is particularly true near the wall region.
Proceedings Papers
Proc. ASME. AJTEC2011, ASME/JSME 2011 8th Thermal Engineering Joint Conference, T10083, March 13–17, 2011
Paper No: AJTEC2011-44245
Abstract
The plate-pin fin heat sink (PPFHS) is composed of a plate fin heat sink (PFHS) and some pin fins planted between the flow channels. In this paper, a numerical investigation was performed to compare the thermal and hydraulic performances of the PPFHSs and PFHS. PPFHSs with five forms of pin cross-section profiles (square, circular, elliptic, NACA 0050, and dropform) were numerically simulated. The influence of pin fin cross-section profile on the flow and heat transfer characteristics was presented by means of Nusselt number and pressure drop. It is found that the Nu number of a PPFHS is at least 35% higher than that of a PFHS used to construct the PPFHS at the same Reynolds number. Planting circular and square pins into the flow channel of heat sinks enhances the heat transfer at the expense of high pressure loss. Using the streamline shaped pins, not only the pressure drop of the compound heat sinks could be decreased considerably, the heat transfer enhancement also makes a step forward. The present numerical simulation provides original information of the influence of different pin-fin cross-section profiles on the thermal and hydraulic performance of the new type compound heat sink, which is helpful in the design of heat sinks.
Proceedings Papers
Proc. ASME. AJTEC2011, ASME/JSME 2011 8th Thermal Engineering Joint Conference, T10085, March 13–17, 2011
Paper No: AJTEC2011-44247
Abstract
A plate-pin fin heat sink (PPFHS) is composed of a plate fin heat sink (PFHS) and some pin fins planted between the flow channels. Just as the other kinds of heat sinks, it is a hierarchical multilevel device with many parameters required for its description. Volume Averaging Theory (VAT) is used to rigorously cast the point-wise conservation of energy, momentum and mass equations into a form that represents the thermal and hydraulic properties of the plate-pin fin (porous media) morphology and to describe the hierarchical nature of the heat sink. Closure for the upper level is obtained using VAT to describe the lower level. At the lower level, the media is described by a representative elementary volume (REV). Closure terms in the VAT equations are related to a local friction factor and a heat transfer coefficient of the REV. The terms in the closure expressions are complex and relating experimental data to the closure terms resulting from VAT is difficult. In this work, we model the plate-pin fin heat sink based on Volume Averaging Theory and use CFD to obtain detailed solutions of flow through an element of PPFHS and use these results to evaluate the closure terms needed for a fast running VAT based code. The VAT based code can then be used to solve the heat transfer characteristics of the higher level heat sink. The objective is to show how plate-pin fin heat sinks can be modeled as porous media based on Volume Averaging Theory and how CFD can be used in place of a detailed, often formidable, experimental effort.
Proceedings Papers
Proc. ASME. AJTEC2011, ASME/JSME 2011 8th Thermal Engineering Joint Conference, T10041, March 13–17, 2011
Paper No: AJTEC2011-44285
Abstract
This study concerns the geometric design of a cylindrical micropin-fin heat sink with multiple row configurations. The objective is to maximize the rate of heat transfer from the solid to the fluid subject to total fin volume and manufacturing constraints. A heat sink with dimensions of 1 mm × 0.6 mm × 1 mm is used for the computational analysis. An automated gradient-based optimization algorithm, which effectively handles an objective function obtained from a computational fluid dynamics simulation is implemented. The optimal design is obtained as results of balance of conductive heat transfer along the pin-fins with laminar forced convection. In the first case, the fins are arranged in two rows of pin-fins with different geometric sizes (diameter, height, and spacing between the fins). The optimal configurations obtained as a function of thermal conductivity ratio and Reynolds number are found to be in good agreement with those obtained from theory and numerical optimization. In the second case, the fins are arranged in rows of three, the effect of thermal conductivity and Reynolds number on the optimal configuration and the maximized heat transfer rate from the arrays of cylinders is reported.
Proceedings Papers
Proc. ASME. AJTEC2011, ASME/JSME 2011 8th Thermal Engineering Joint Conference, T40001, March 13–17, 2011
Paper No: AJTEC2011-44005
Abstract
Boiling water in small channels that are formed along turbine blades has been examined since the 1970s as a means to dissipating large amounts of heat. Later, similar geometries could be found in cooling systems for computers, fusion reactors, rocket nozzles, avionics, hybrid vehicle power electronics, and space systems. This paper addresses (a) the implementation of two-phase micro-channel heat sinks in these applications, (b) the fluid physics and limitations of boiling in small passages, and effective tools for predicting the thermal performance of heat sinks, and (c) means to enhance this performance. It is shown that despite many hundreds of publications attempting to predict the performance of two-phase micro-channel heat sinks, there are only a handful of predictive tools that can tackle broad ranges of geometrical and operating parameters or different fluids. Development of these tools is complicated by a lack of reliable databases and the drastic differences in boiling behavior of different fluids in small passages. For example, flow boiling of certain fluids in very small diameter channels may be no different than in macro-channels. Conversely, other fluids may exhibit considerable ‘confinement’ even in seemingly large diameter channels. It is shown that cutting-edge heat transfer enhancement techniques, such as the use of nano-fluids and carbon nanotube coatings, with proven merits to single-phase macro systems, may not offer similar advantages to microchannel heat sinks. Better performance may be achieved by careful optimization of the heat sink’s geometrical parameters and by adapting a new class of hybrid cooling schemes that combine the benefits of micro-channel flow with those of jet impingement.
Proceedings Papers
Proc. ASME. AJTEC2011, ASME/JSME 2011 8th Thermal Engineering Joint Conference, T10142, March 13–17, 2011
Paper No: AJTEC2011-44108
Abstract
In recent years, since heat dissipation rates and high frequency electronic devices have been increasing, a heat sink with high heat transfer performance is required to cool these devices. Heat sink utilizing micro-channels with several ten microns are expected to provide an excellent cooling performance because of their high heat transfer capacities due to small channel. Therefore, various porous materials such as cellular metals have been investigated for heat sink applications. However, heat sink using conventional porous materials has a high pressure drop because the cooling fluid flow through the pores is complex. Among the described porous materials, a lotus-type porous metal with straight pores is preferable for heat sinks due to the small pressured drop. In present work, cooling performance of the lotus copper heat sink for air cooling and water cooling is introduced. The experimental data for air cooling show 13.2 times higher than that for the conventional groove fins. And, the data for the water cooling show 1.7 times higher than that for the micro-channels. It is concluded that lotus copper heat sink is the most prospective candidate for high power electronics devices.
Proceedings Papers
Proc. ASME. AJTEC2011, ASME/JSME 2011 8th Thermal Engineering Joint Conference, T30013, March 13–17, 2011
Paper No: AJTEC2011-44226
Abstract
A numerical model and analysis has been performed on a state-of-the art one shot heat sink including an eicosane/carbon nanotubes (CNT) system of nano-enhanced phase change material (NEPCM). The nanoparticles, dispersed in the PCM liquid phase, can form a network of interconnected ballistic heat transport lines, thus increasing the thermal conductivity of the PCM by almost two orders of magnitude. The results show that the heat sink can be operated with a 40% higher heat load, for an extra 42% time, or with a 29% lighter mass, before the electronics reach the allowable maximum temperature.
Proceedings Papers
H. Peter J. de Bock, Shakti Chauhan, Pramod Chamarthy, Chris Eastman, Stanton Weaver, Bryan P. Whalen, Tao Deng, Boris Russ, Frank M. Gerner, Douglas Johnson, David Courson, Quinn Leland, Kirk Yerkes
Proc. ASME. AJTEC2011, ASME/JSME 2011 8th Thermal Engineering Joint Conference, T10249, March 13–17, 2011
Paper No: AJTEC2011-44646
Abstract
Heat pipes are commonly used in electronics cooling applications to spread heat from a concentrated heat source to a larger heat sink. Heat pipes work on the principles of two-phase heat transfer by evaporation and condensation of a working fluid. The amount of heat that can be transported is limited by the capillary and hydrostatic forces in the wicking structure of the device. Thermal ground planes are two-dimensional high conductivity heat pipes that can serve as thermal ground to which heat can be rejected by a multitude of heat sources. As hydrostatic forces are dependent on gravity, it is commonly known that heat pipe and thermal ground plane performance is orientation dependent. The effect of variation of gravity force on performance is discussed and the development of a miniaturized thermal ground plane for high g operation is described. In addition, experimental results are presented from zero to −10g acceleration. The study shows and discusses that minimal orientation or g-force dependence can be achieved if pore dimensions in the wicking structure can be designed at micro/nano-scale dimensions.
Proceedings Papers
Proc. ASME. AJTEC2011, ASME/JSME 2011 8th Thermal Engineering Joint Conference, T30065, March 13–17, 2011
Paper No: AJTEC2011-44656
Abstract
The thermal loads (excess heat) in all DoD systems (aircrafts and spacecrafts) have steadily been increasing at an alarming rate. The current practice is use fuel as the heat sink to dump the excess heat. This operational approach currently is not adequate to sufficiently cool the electronics and thermal devices, and thus limiting the system performance and its system readiness. Amorphous materials system (polymers, adhesive, etc.), which is known to be thermally non-conductive material, is prevalent in almost all DoD systems. So, there is a big incentive in tailoring its thermal transport characteristics to meet the system requirements. Advent of the conductive nano material constituents (such as, carbon nanotubes, graphite platelets, graphene, etc.) and its adaptation in polymers provides us such opportunity. The success of adapting the nano constituents in polymers in providing the conductive pathways through the polymer phase solely lies on the extent how the interface thermal transport characteristics are tailoring between the polymer and nano constituent interfaces. In order to understand the thermal transport phenomena is amorphous materials and to design its interface consistent to the nano constituent morphology scale, computational methodology using atomistic molecular dynamics (MD) is developed. Examples for tailoring thermal interface of nano constituents with polymer will be presented.
Proceedings Papers
Proc. ASME. AJTEC2011, ASME/JSME 2011 8th Thermal Engineering Joint Conference, T30021, March 13–17, 2011
Paper No: AJTEC2011-44340
Abstract
Thermal transport through carbon nanotubes (CNTs) attracted a lot of attention over the past decade. Several experimental studies have been carried out to determine the thermal conductivities of CNTs [1–3]. However, the measurements are based on an individual CNT sample between two suspended membranes and the results actually include both the intrinsic thermal resistance of the CNT and the contact thermal resistance between the CNT and the two suspended membranes that serve as a heat source and a heat sink. Hence, the effective thermal conductivity extracted from these measurements should be lower than the intrinsic thermal conductivities of the CNTs measured. To minimize the contact thermal resistance, electron beam induce deposition (EBID) of different metals has been used to increase the contact area between the CNT and the heat source and sink [3,4]. However, it is still not clear how effective this treatment is and to what level the effective thermal conductivity obtained after the EBID treatment reflects the intrinsic one.
Proceedings Papers
Proc. ASME. AJTEC2011, ASME/JSME 2011 8th Thermal Engineering Joint Conference, T10209, March 13–17, 2011
Paper No: AJTEC2011-44083
Abstract
The cooling capacity of two-phase transport in microchannels is limited by the occurrence of critical heat flux (CHF). Due to the nature of the phenomenon, it is challenging to obtain reliable CHF data without causing damage to the device under test. In this work, the critical heat fluxes for flow boiling of FC-77 in a silicon thermal test die containing 60 parallel microchannels were measured at five total flow rates through the microchannels in the range of 20–80 ml/min. CHF is caused by dryout at the wall near the exit of the microchannels, which in turn is attributed to the flow reversal upstream of the microchannels. The bubbles pushed back into the inlet plenum agglomerate; the resulting flow blockage is a likely cause for the occurrence of CHF which is marked by an abrupt increase in wall temperature near the exit and an abrupt decrease in pressure drop across the microchannels. A database of 49 data points obtained from five experiments in four independent studies with water, R-113, and FC-77 as coolants was compiled and analyzed. It is found that the CHF has a strong dependence on the coolant, the flow rate, and the area upon which the flux definition is based. However, at a given flow rate, the critical heat input (total heat transfer rate to the coolant when CHF occurs) depends only on the coolant and has minimal dependence on the details of the microchannel heat sink (channel size, number of channels, substrate material, and base area). The critical heat input for flow boiling in multiple parallel microchannels follows a well-defined trend with the product of mass flow rate and latent heat of vaporization. A power-law correlation is proposed which offers a simple, yet accurate method for predicting the CHF. The thermodynamic exit quality at CHF is also analyzed and discussed to provide insights into the CHF phenomenon in a heat sink containing multiple parallel microchannels.
Proceedings Papers
Proc. ASME. AJTEC2011, ASME/JSME 2011 8th Thermal Engineering Joint Conference, T10017, March 13–17, 2011
Paper No: AJTEC2011-44013
Abstract
Aerospace vehicle design has progressed in an evolutionary manner, with certain discrete changes such as turbine engines replacing propellers for higher speeds. The evolution has worked very well for commercial aircraft because the major components can be optimized independently. This is not true for many military configurations which require a more integrated approach. In addition, the introduction of aspects for which there is no pre-existing database requires special attention. Examples of subsystem that have no pre-existing data base include directed energy weapons (DEW) such as high power microwaves (HPM) and high energy lasers (HEL). These devices are inefficient, therefore a large portion of the energy required to operate the device is converted to waste heat and must be transferred to a suitable heat sink. For HPM, the average heat load during one ‘shot’ is on the same order as traditional subsystems and thus designing a thermal management system is possible. The challenge is transferring the heat from the HPM device to a heat sink. The power density of each shot could be hundreds of megawatts. This heat must be transferred from the HPM beam dump to a sink. The heat transfer must occur at a rate that will support shots in the 10–100Hz range. For HEL systems, in addition to the high intensity, there are substantial system level thermal loads required to provide an ‘infinite magazine.’ Present models are inadequate to analyze these problems, current systems are unable to sustain the energy dissipation required and the high intensity heat fluxes applied over a very short duration phenomenon is not well understood. These are examples of potential future vehicle integration challenges. This paper addresses these and other subsystems integration challenges using a common currency for vehicle optimization. Exergy, entropy generation minimization, and energy optimization are examples of methodologies that can enable the creation of energy optimized systems. These approaches allow the manipulation of fundamental equations governing thermodynamics, heat transfer, and fluid mechanics to produce minimized irreversibilities at the vehicle, subsystem and device levels using a common currency. Applying these techniques to design for aircraft system-level energy efficiency would identify not only which subsystems are inefficient but also those that are close to their maximum theoretical efficiency while addressing diverse system interaction and optimal subsystem integration. Such analyses would obviously guide researchers and designers to the areas having the highest payoff and enable departures from the evolutionary process and create a breakthrough design.
Proceedings Papers
Proc. ASME. AJTEC2011, ASME/JSME 2011 8th Thermal Engineering Joint Conference, T10170, March 13–17, 2011
Paper No: AJTEC2011-44557
Abstract
A high temperature guarded-comparative-longitudinal heat flow measurement system has been built to measure the thermal conductivity of a composite nuclear fuel compact. It is a steady-state measurement device designed to operate over a temperature range of 300 K to 1200 K. No existing apparatus is currently available for obtaining the thermal conductivity of the composite fuel in a non-destructive manner due to the compact’s unique geometry and composite nature. The current system design has been adapted from ASTM E 1225. As a way to simplify the design and operation of the system, it uses a unique radiative heat sink to conduct heat away from the sample column. A finite element analysis was performed on the measurement system to analyze the associated error for various operating conditions. Optimal operational conditions have been discovered through this analysis and results are presented. Several materials have been measured by the system and results are presented for stainless steel 304, inconel 625, and 99.95% pure iron covering a range of thermal conductivities of 10 W/m*K to 70 W/m*K. A comparison of the results has been made to data from existing literature.
Proceedings Papers
Proc. ASME. AJTEC2011, ASME/JSME 2011 8th Thermal Engineering Joint Conference, T10123, March 13–17, 2011
Paper No: AJTEC2011-44353
Abstract
The performance of two-phase flow through fractal-like heat sinks, subject to both geometrical and flow constraints was assessed. Constraints are crucial in order to satisfy physical requirements of a design. A one-dimensional model of two-phase flow through fractal-like branching microchannels was used to estimate pressure drop, wall temperature and critical heat flux. Water is employed as the working fluid. The exit pressure is varied between 6 kPa and 101.3 kPa (absolute) in order to achieve two-phase flow at temperatures lower than the maximum wall temperature constraint of 70°C. Preliminary results show that the benefit to cost ratio of two-phase flow is on the same order of magnitude as single-phase flow, both with a 70°C wall temperature constraint. Alternatively, a critical heat flux model is used to constrain the flow rate in order for the imposed heat flux to be 50% of the critical heat flux.