Many energy systems rely on flat surfaces for energy conversion. The simplest example is the solar thermal collector which absorbs solar irradiance on a flat plate and then transfers heat via conduction, convection and radiation to both the surroundings and more importantly to the working fluid. Conversely a night-sky radiator tries to lose heat via convection and radiation to ambient and night sky respectively while being coupled either via convection or conduction to higher temperature system. The recent advent of nanoparticles, particularly liquid-nanoparticle suspensions termed nanofluids, have led to novel systems that can reduce some of these heat transfer steps by utilizing the whole fluid volume directly. This study looks at the advantages afforded by using the volumetric approach on both the radiative properties of the system and the simplification of the heat transfer networks within these systems.

This content is only available via PDF.
You do not currently have access to this content.