Self-assembled monolayers (SAMs) have recently garnered much interest due to their unique electrical and chemical properties. The limited literature detailing SAM thermal properties has suggested that thermal boundary conductance (TBC) at solid-SAM junctions is not only low, but also insensitive to changes in SAM length as the number of methylene groups (-CH2-) along alkanedithiol chains is varied from 8 to 10. The present study investigates the vibrational spectra of alkanedithiol SAMs as a function of the number of methylene groups forming the molecule backbone via Hartree-Fock methods and the subsequent effects on TBC calculated using a diffuse scattering model. In particular, the vibrational overlap between the alkanedithiol and Au is studied. It is found that despite the addition of 9 new vibrational modes per added methylene group, only one of those modes is elastically accessible to Au. It is believed that this “vibrational inaccessibility” is the cause of the insensitivity of thermal conductance to molecule length.

This content is only available via PDF.
You do not currently have access to this content.