It has been performed a simple simulation and calculation on solar energy collection which is used indirectly to power a thermoacoustic prime mover by producing pressurized hot steam which would supply thermal energy to the prime mover via sealed-off hot heat exchangers. The solar energy collection took place in Yogyakarta City - Indonesia where the average energy of solar global radiation of 4.8 kWh/m2/day (17.3MJ/m2/day) is available around the year. The calculation including the amount of the remaining heat stored, steam pressure, and steam temperature for various areas of the collector unit (Fresnel lens) and volume of water, were done as a function of time for several days. We found that appropriate combinations of lens area and water volume would enable us to operate the thermoacoustic prime mover continuously all day and night.

This content is only available via PDF.
You do not currently have access to this content.