It can be difficult to burn relatively cheap, poor quality, unprepared biomass materials in industrial heating processes because of their variable composition, relatively low calorific values and high moisture contents. Consequently the stability and efficiency of the combustion process can be adversely affected unless they are co-fired with a hydrocarbon support fuel. There is a lack of information on the “optimum” conditions for co-firing of coal and high moisture biomass as well as on the proportions of support fuel which should be used. This paper is therefore concerned with the pilot scale (<25 kW thermal input) fluidised bed combustion of blends of coal with pressed sugar beet pulp, a solid biomass with an average moisture content of 71%. The experimental work was undertaken in collaboration with British Sugar plc who operate a coal-fired 40 MW thermal capacity fluidised bed producing hot combustion gases for subsequent drying applications. The project studied the combustion characteristics of different coal and pressed pulp blends over a wide range of operating conditions. It was found that stable combustion could only be maintained if the proportion of pulp by mass in the blended fuel was no greater than 50%. However evaporation of the moisture in the pressed pulp cools the bed so that the excess air which is necessary to maintain a specified bed temperature at a fixed thermal input can be reduced as the proportion of biomass in the blended fuel is increased. Therefore, with a 50/50 blend the bed can be operated with 20% less fluidising air and this will be beneficial for the output of the full scale plant since at present the flow rate of the air and hence the amount of coal which can be burnt is restricted by supply system pressure drop limitations. A further benefit of co-firing pressed pulp is that NOx emissions are reduced by about 25%. Agglomeration of the bed can be a problem when co-firing biomass because of the formation of “sticky” low melting point alkali metal silicate eutectics which result in subsequent adhesion of the ash and sand particles. Consequently longer term co-firing tests with a 50/50 blended fuel by mass were undertaken. Problems of bed agglomeration were not observed under these conditions with relatively low levels of alkali metals in the ash.
Skip Nav Destination
ASME/JSME 2011 8th Thermal Engineering Joint Conference
March 13–17, 2011
Honolulu, Hawaii, USA
Conference Sponsors:
- Heat Transfer Division
ISBN:
978-0-7918-3892-1
PROCEEDINGS PAPER
Fluidised Bed Combustion of Blends of Coal and Pressed Sugar Beet Pulp Available to Purchase
John Ward,
John Ward
University of Glamorgan, Pontypridd, UK
Search for other works by this author on:
Muhammad Akram,
Muhammad Akram
University of Glamorgan, Pontypridd, UK
Search for other works by this author on:
Roy Garwood
Roy Garwood
University of Glamorgan, Pontypridd, UK
Search for other works by this author on:
John Ward
University of Glamorgan, Pontypridd, UK
Muhammad Akram
University of Glamorgan, Pontypridd, UK
Roy Garwood
University of Glamorgan, Pontypridd, UK
Paper No:
AJTEC2011-44093, T20014; 8 pages
Published Online:
March 1, 2011
Citation
Ward, J, Akram, M, & Garwood, R. "Fluidised Bed Combustion of Blends of Coal and Pressed Sugar Beet Pulp." Proceedings of the ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASME/JSME 2011 8th Thermal Engineering Joint Conference. Honolulu, Hawaii, USA. March 13–17, 2011. T20014. ASME. https://doi.org/10.1115/AJTEC2011-44093
Download citation file:
10
Views
Related Proceedings Papers
Related Articles
The Study of Partitioning of Heavy Metals During Fluidized Bed Combustion of Sewage Sludge and Coal
J. Energy Resour. Technol (June,2006)
Optimization of Co-Firing Burners
J. Thermal Sci. Eng. Appl (December,2016)
Co-Combustion of Pulverized Coal and Biomass in Fluidized Bed of Furnace
J. Energy Resour. Technol (November,2017)
Related Chapters
The Special Characteristics of Closed-Cycle Gas Turbines
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Gas-Fluidized Beds
Two-Phase Heat Transfer
ASME Section VI: Recommended Rules for the Care and Operation of Heating Boilers
Companion Guide to the ASME Boiler & Pressure Vessel Codes, Volume 1 Sixth Edition