A slug flow with phase change in a vertical mini-tube is numerically simulated on the basis of a scheme of continuum mechanics. To formulate two-phase flow, the volume of fluid, VOF, method is employed; the advection of the gas-liquid surface is expressed by the piecewise linear interface calculation, PLIC, scheme, while the effect of surface tension is evaluated by the continuum surface force, CSF, model. Since the treatment of liquid film between a bubble and tube wall is crucially important to properly predict both heat transfer and resulting fluid flow in a mini-tube, a semi-empirical approach based on subsidiary knowledge estimated from a preliminary experiment is newly proposed. Further, an additional numerical procedure is introduced to obtain allowable mass conservation even in the thin-film region with intense evaporation. Consequently, by introducing only one parameter, the physical meaning of which is clear, the bubble behavior is reasonably predicted, and its detailed mechanism is clarified.

This content is only available via PDF.
You do not currently have access to this content.