In the present study, spray cooling curves are presented for two micro-structured surfaces and are compared to smooth surface results. The micro-structured surfaces consisted of bio-inspired fractal-like geometries, denoted as grooves or fins, extending in a radial direction from the center to the periphery of a 37.8 mm circular disc. Depending on the location on the surface, dimensions of groove widths and heights varied from 100 to 500 μm, and 30 to 60 μm, respectively. Fin width and height dimensions remained constant over the surface at 127 and 60 μm, respectively. Results are presented as heat flux versus the surface-to-exit spray temperature difference at each of five volume flux conditions ranging from 0.54 to 2.04 × 10−3 m3/m2-s. Convection heat transfer coefficients are also presented for each case as a function of heat flux. Results indicate that at low and high volume fluxes, an improvement in heat transfer occurs in the single phase regime for the fin geometry. Enhancement in the single phase regime does not occur at the intermediate volume flux condition. In the two phase regime for the fin structure significant enhancements, up to 50%, are observed. Whereas the groove structure performs similarly to the smooth surface in the single phase regime and exhibits large degradation in the two phase and critical heat flux regimes, up to 50%. Critical heat flux for the fin surface compares well to that of the flat surface, with a slightly increase at high volume flux conditions.
Skip Nav Destination
ASME/JSME 2011 8th Thermal Engineering Joint Conference
March 13–17, 2011
Honolulu, Hawaii, USA
Conference Sponsors:
- Heat Transfer Division
ISBN:
978-0-7918-3892-1
PROCEEDINGS PAPER
Spray Cooling Heat Transfer Enhancement and Degradation Using Fractal-Like Micro-Structured Surfaces Available to Purchase
Alex Tulchinsky,
Alex Tulchinsky
Oregon State University, Corvallis, OR
Search for other works by this author on:
Deborah V. Pence,
Deborah V. Pence
Oregon State University, Corvallis, OR
Search for other works by this author on:
James A. Liburdy
James A. Liburdy
Oregon State University, Corvallis, OR
Search for other works by this author on:
Alex Tulchinsky
Oregon State University, Corvallis, OR
Deborah V. Pence
Oregon State University, Corvallis, OR
James A. Liburdy
Oregon State University, Corvallis, OR
Paper No:
AJTEC2011-44331, T10192; 9 pages
Published Online:
March 1, 2011
Citation
Tulchinsky, A, Pence, DV, & Liburdy, JA. "Spray Cooling Heat Transfer Enhancement and Degradation Using Fractal-Like Micro-Structured Surfaces." Proceedings of the ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASME/JSME 2011 8th Thermal Engineering Joint Conference. Honolulu, Hawaii, USA. March 13–17, 2011. T10192. ASME. https://doi.org/10.1115/AJTEC2011-44331
Download citation file:
14
Views
Related Proceedings Papers
Related Articles
Experimental and Numerical Investigation of Forced Convective Characteristics of Arrays of Channel Mounted Obstacles
J. Heat Transfer (February,1999)
Film Thickness and Heat Transfer Measurements in a Spray Cooling System With R134a
J. Electron. Packag (March,2011)
High Heat Flux With Small Scale Monodisperse Sprays
J. Heat Transfer (December,2012)
Related Chapters
Extended Surfaces
Thermal Management of Microelectronic Equipment
Extended Surfaces
Thermal Management of Microelectronic Equipment, Second Edition
Circular Flux Tubes and Disks
Thermal Spreading and Contact Resistance: Fundamentals and Applications