The effects of pitch and depth on the condensation heat transfer of R-134a flowing inside corrugated tubes are experimentally investigated. The test section is a horizontal tube-in-tube heat exchanger. The refrigerant flows in the inner tube and the water flows in the annulus. The length of heat exchanger is 2 m. A smooth tube and corrugated tubes having inner diameters of 8.7 mm are used as an inner tube. The corrugation pitches used in this study are 5.08, 6.35, and 8.46 mm. Similarly, the corrugation depths are 1, 1.25, and 1.5 mm. The effects of corrugation pitch and depth on tube wall temperature, heat transfer coefficient and frictional pressure drop are discussed. The results illustrate that the maximum heat transfer coefficient and frictional pressure drop obtained from the corrugated tube are up to 50% and 70% higher than those obtained from the smooth tube, respectively.

This content is only available via PDF.
You do not currently have access to this content.