A mechanistic heat transfer correlation is proposed to estimate heat transfer coefficient for non-boiling two-phase flow in horizontal, slightly inclined, and vertical pipes using the analogy between friction factor and heat transfer. Local heat transfer coefficients, pressure drops and flow parameters were measured for air-water flow in a 27.9 mm stainless steel pipe. The heat transfer and pressure drop data were collected by carefully coordinating the gas and liquid superficial Reynolds numbers. The proposed mechanistic correlation is validated by using experimentally measured heat transfer data. Evaluation of the mechanistic correlation with the measured heat transfer data indicated that the analogy between friction factor and heat transfer can be used with reasonable accuracy for heat transfer predictions in non-boiling two-phase pipe flow. Comparison with experimental results showed that the bulk of the data points were predicted within ±30% by the mechanistic model.

This content is only available via PDF.
You do not currently have access to this content.