In recent years, since heat dissipation rates and high frequency electronic devices have been increasing, a heat sink with high heat transfer performance is required to cool these devices. Heat sink utilizing micro-channels with several ten microns are expected to provide an excellent cooling performance because of their high heat transfer capacities due to small channel. Therefore, various porous materials such as cellular metals have been investigated for heat sink applications. However, heat sink using conventional porous materials has a high pressure drop because the cooling fluid flow through the pores is complex. Among the described porous materials, a lotus-type porous metal with straight pores is preferable for heat sinks due to the small pressured drop. In present work, cooling performance of the lotus copper heat sink for air cooling and water cooling is introduced. The experimental data for air cooling show 13.2 times higher than that for the conventional groove fins. And, the data for the water cooling show 1.7 times higher than that for the micro-channels. It is concluded that lotus copper heat sink is the most prospective candidate for high power electronics devices.

This content is only available via PDF.
You do not currently have access to this content.