A mathematical model of lime calcination process in normal shafts kiln has been developed to determine the heat and mass transfer between the gas and the solid. The model is one-dimensional and steady state. The transport of mass and energy of the gas and the solid is modeled by a system of ordinary differential equations. A shrinking core approach is employed for the mechanics and chemical reactions of the solid material. The model can be used to predict the temperature profiles of the particle bed, the gas phase along the length of kiln axis. The calcination behavior of the particle bed can be also investigated. The influences of operational parameters such as: energy input, the origin of feed limestone and the lime throughput on the kiln performance including pressure drop are considered. Additionally, the local heat loss through the kiln wall is studied. The results of this study are direct utility for optimization and design of large-scale technical shaft kilns.

This content is only available via PDF.
You do not currently have access to this content.