The horizontal frame members that often protrude from the inner surface of a window can significantly effect the convective heat transfer rate from this inner surface to the room. The purpose of the present numerical study was to determine how the size of a pair of horizontal frame members effect this heat transfer rate. The flow has been assumed to be steady and conditions under which laminar, transitional, and turbulent flows occur are considered. Fluid properties have been assumed constant except for the density change with temperature that gives rise to the buoyancy forces, this being dealt with using the Boussinesq approach. The governing equations have been solved using the FLUENT commercial CFD code. The k-epsilon turbulence model with standard wall functions and with buoyancy force effects fully accounted for has been used. The solution has the following parameters: the Rayleigh number, the Prandtl number, the dimensionless window recess depth, and the dimensionless width and depth of the frame members. Results have been obtained for a Prandtl number of 0.74.

This content is only available via PDF.
You do not currently have access to this content.