Water droplet evaporation process is numerically modelled under various heat and mass transfer conditions. Regularities of heat transfer process interaction are examined. Modelling in this work was performed using the combined analytical–numerical method to investigate heat and mass transfer in the two-phase droplets-gas flow system. The influence of forced liquid circulation on the thermal state of droplets is taken into account by the effective coefficient of thermal conductivity. Calculating the rate of droplet evaporation and the intensity of convective heating, the influence of the Stefan’s hydrodynamic flow is taken into account. Balancing energy fluxes in the droplet to within one hundredth of a percent and using the fastest sinking the droplet surface temperature is determined.

This content is only available via PDF.
You do not currently have access to this content.