A coupled computational fluid dynamics (CFD)/discrete element method (DEM) is used to simulate the gas–solid two-phase flow in a laboratory-scale spouted fluidized bed. Transient experimental results in the spouted fluidized bed are obtained in a special test rig using the high-speed imaging technique. The computational domain of the quasi-three-dimensional (3D) spouted fluidized bed is simulated using the commercial CFD flow solver ANSYS-fluent. Hydrodynamic flow field is computed by solving the incompressible continuity and Navier–Stokes equations, while the motion of the solid particles is modeled by the Newtonian equations of motion. Thus, an Eulerian–Lagrangian approach is used to couple the hydrodynamics with the particle dynamics. The bed height, bubble shape, and static pressure are compared between the simulation and the experiment. At the initial stage of fluidization, the simulation results are in a very good agreement with the experimental results; the bed height and the bubble shape are almost identical. However, the bubble diameter and the height of the bed are slightly smaller than in the experimental measurements near the stage of bubble breakup. The simulation results with their experimental validation demonstrate that the CFD/DEM coupled method can be successfully used to simulate the transient gas–solid flow behavior in a fluidized bed which is not possible to simulate accurately using the granular approach of purely Euler simulation. This work should help in gaining deeper insight into the spouted fluidized bed behavior to determine best practices for further modeling and design of the industrial scale fluidized beds.

References

1.
Abad
,
A.
,
Pérez-Vega
,
R.
,
Diego
,
L. F. D.
,
García-Labiano
,
F.
,
Gayán
,
P.
, and
Adánez
,
J.
,
2015
, “
Design and Operation of a 50kWth Chemical Looping Combustion (CLC) Unit for Solid Fuels
,”
Appl. Energy
,
157
, pp.
295
303
.
2.
Ohlemüller
,
P.
,
Busch
,
J.-P.
,
Reitz
,
M.
,
Ströhle
,
J.
, and
Epple
,
B.
,
2016
, “
Chemical-Looping Combustion of Hard Coal: Autothermal Operation of a 1 MWth Pilot Plant
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
042203
.
3.
Han
,
T.
,
Hong
,
H.
,
Jin
,
H.
, and
Zhang
,
C.
,
2011
, “
An Advanced Power-Generation System With CO2 Recovery Integrating DME Fueled Chemical Looping Combustion
,”
ASME J. Energy Resour. Technol.
,
133
(
1
), p.
012201
.
4.
Hassan
,
B.
,
Ogidiama
,
O. V.
,
Khan
,
M. N.
, and
Shamim
,
T.
,
2016
, “
Energy and Exergy Analyses of a Power Plant With Carbon Dioxide Capture Using Multistage Chemical Looping Combustion
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032002
.
5.
Breault
,
R. W.
,
Yarrington
,
C. S.
, and
Weber
,
J. M.
,
2015
, “
The Effect of Thermal Treatment of Hematite Ore for Chemical Looping Combustion of Methane
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
042202
.
6.
Arjmand
,
M.
,
Leion
,
H.
,
Mattisson
,
T.
, and
Lyngfelt
,
A.
,
2014
, “
Investigation of Different Manganese Ores as Oxygen Carriers in Chemical-Looping Combustion (CLC) for Solid Fuels
,”
Appl. Energy
,
113
, pp.
1883
1894
.
7.
Hamilton
,
M. A.
,
Whitty
,
K. J.
, and
Lighty
,
J. S.
,
2016
, “
Numerical Simulation Comparison of Two Reactor Configurations for Chemical Looping Combustion and Chemical Looping With Oxygen Uncoupling
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
042213
.
8.
Banerjee
,
S.
, and
Agarwal
,
R. K.
,
2015
, “
An Eulerian Approach to Computational Fluid Dynamics Simulation of a Chemical Looping Combustion Reactor With Chemical Reactions
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
042201
.
9.
Varshney
,
S.
,
Srivastava
,
L.
, and
Pandit
,
M.
,
2016
, “
A Parallel Computing Approach for Integrated Security Assessment of Power System
,”
Int. J. Electr. Power Energy Syst.
,
78
, pp.
591
599
.
10.
Zhao
,
Y.
,
Bing
,
L.
, and
Zhong
,
Y.
,
2013
, “
Euler–Euler Modeling of a Gas–Solid Bubbling Fluidized Bed With Kinetic Theory of Rough Particles
,”
Chem. Eng. Sci.
,
104
(
50
), pp.
767
779
.
11.
Adamczyk
,
W. P.
,
Węcel
,
G.
,
Klajny
,
M.
,
Kozołlub
,
P.
,
Klimanek
,
A.
, and
Białecki
,
R. A.
,
2014
, “
Modeling of Particle Transport and Combustion Phenomena in a Large-Scale Circulating Fluidized Bed Boiler Using a Hybrid Euler–Lagrange Approach
,”
Particuology
,
16
(
5
), pp.
29
40
.
12.
Adamczyk
,
W. P.
,
Klimanek
,
A.
,
Białecki
,
R. A.
,
Węcel
,
G.
,
Kozołub
,
P.
, and
Czakiert
,
T.
,
2014
, “
Comparison of the Standard Euler–Euler and Hybrid Euler–Lagrange Approaches for Modeling Particle Transport in a Pilot-Scale Circulating Fluidized Bed
,”
Particuology
,
15
(
4
), pp.
129
137
.
13.
Mishra
,
B. K.
, and
Rajamani
,
R. K.
,
1994
, “
Simulation of Charge Motion in Ball Mills—Part 1: Experimental Verifications
,”
Int. J. Miner. Process.
,
40
(
3–4
), pp.
171
186
.
14.
Helland
,
E.
,
Bournot
,
H.
,
Occelli
,
R.
, and
Tadrist
,
L.
,
2007
, “
Drag Reduction and Cluster Formation in a Circulating Fluidised Bed
,”
Chem. Eng. Sci.
,
62
(
1–2
), pp.
148
158
.
15.
Tsuji
,
T.
,
Yabumoto
,
K.
, and
Tanaka
,
T.
,
2008
, “
Spontaneous Structures in Three-Dimensional Bubbling Gas-Fluidized Bed by Parallel DEM–CFD Coupling Simulation
,”
Powder Technol.
,
184
(
2
), pp.
132
140
.
16.
Yang
,
S.
,
Luo
,
K.
,
Fang
,
M.
, and
Fan
,
J.
,
2014
, “
Parallel CFD–DEM Modeling of the Hydrodynamics in a Lab-Scale Double Slot-Rectangular Spouted Bed With a Partition Plate
,”
Chem. Eng. J.
,
236
(
2
), pp.
158
170
.
17.
Warr
,
S.
,
Jacques
,
G. T. H.
, and
Huntley
,
J. M.
,
1994
, “
Tracking the Translational and Rotational Motion of Granular Particles: Use of High-Speed Photography and Image Processing
,”
Powder Technol.
,
81
(
1
), pp.
41
56
.
18.
Brenner
,
H.
,
1967
, “
Coupling Between the Translational and Rotational Brownian Motions of Rigid Particles of Arbitrary Shape—II, General Theory
,”
J. Colloid Interface Sci.
,
23
(
3
), pp.
407
436
.
19.
Tsuji
,
Y.
,
Kawaguchi
,
T.
, and
Tanaka
,
T.
,
1993
, “
Discrete Particle Simulation of Two-Dimensional Fluidized Bed
,”
Powder Technol.
,
77
(
1
), pp.
79
87
.
20.
Dietiker
,
J. F.
,
Li
,
T.
,
Garg
,
R.
, and
Shahnam
,
M.
,
2013
, “
Cartesian Grid Simulations of Gas-Solids Flow Systems With Complex Geometry
,”
Powder Technol.
,
235
(
2
), pp.
696
705
.
21.
Guo
,
Y.
,
Wu
,
C. Y.
, and
Thornton
,
C.
,
2013
, “
Modeling Gas-Particle Two-Phase Flows With Complex and Moving Boundaries Using DEM-CFD With an Immersed Boundary Method
,”
AIChE J.
,
59
(
4
), pp.
1075
1087
.
22.
Stroh
,
A.
,
Alobaid
,
F.
,
Hasenzahl
,
M. T.
,
Hilz
,
J.
,
Ströhle
,
J.
, and
Epple
,
B.
,
2016
, “
Comparison of Three Different CFD Methods for Dense Fluidized Beds and Validation by a Cold Flow Experiment
,”
Particuology
,
29
(
6
), pp. 34–47.https://doi.org/10.1016/j.partic.2015.09.010
23.
Zhuang
,
Y. Q.
,
Chen
,
X. M.
,
Luo
,
Z. H.
, and
Xiao
,
J.
,
2014
, “
CFD-DEM Modeling of Gas-Solid Flow and Catalytic MTO Reaction in a Fluidized Bed Reactor
,”
Comput. Chem. Eng.
,
60
, pp.
1
16
.
24.
Zhang
,
Z.
,
Ling
,
Z.
, and
Agarwal
,
R.
,
2014
, “
Transient Simulations of Spouted Fluidized Bed for Coal-Direct Chemical Looping Combustion
,”
Energy Fuels
,
28
(
2
), pp.
1548
1560
.
25.
Kharaz
,
A. H.
,
Gorham
,
D. A.
, and
Salman
,
A. D.
,
1998
, “
Accurate Measurement of Particle Impact Parameters
,”
Meas. Sci. Technol.
,
10
(
1
), p.
31
.https://doi.org/10.1088/0957-0233/10/1/009
26.
Esmaili
,
E.
, and
Mahinpey
,
N.
,
2011
, “
Adjustment of Drag Coefficient Correlations in Three Dimensional CFD Simulation of Gas-Solid Bubbling Fluidized Bed
,”
Adv. Eng. Software
,
42
(
6
), pp.
375
386
.
27.
Gerber
,
S.
,
Behrendt
,
F.
, and
Oevermann
,
M.
,
2010
, “
An Eulerian Modeling Approach of Wood Gasification in a Bubbling Fluidized Bed Reactor Using Char as Bed Material
,”
Fuel
,
89
(
10
), pp.
2903
2917
.
28.
Almohammed
,
N.
,
Alobaid
,
F.
,
Breuer
,
M.
, and
Epple
,
B.
,
2014
, “
A Comparative Study on the Influence of the Gas Flow Rate on the Hydrodynamics of a Gas–Solid Spouted Fluidized Bed Using Euler–Euler and Euler–Lagrange/DEM Models
,”
Powder Technol.
,
264
(
3
), pp.
343
364
.
You do not currently have access to this content.