This work presents high-speed thermographic measurements of the melt pool length during single track laser scans on nickel alloy 625 substrates. Scans are made using a commercial laser powder bed fusion (PBF) machine while measurements of the radiation from the surface are made using a high speed (1800 frames per second) infrared camera. The melt pool length measurement is based on the detection of the liquidus–solidus transition that is evident in the temperature profile. Seven different combinations of programmed laser power (49–195 W) and scan speed (200–800 mm/s) are investigated, and numerous replications using a variety of scan lengths (4–12 mm) are performed. Results show that the melt pool length reaches steady-state within 2 mm of the start of each scan. Melt pool length increases with laser power, but its relationship with scan speed is less obvious because there is no significant difference between cases performed at the highest laser power of 195 W. Although keyholing appears to affect the anticipated trends in melt pool length, further research is required.

References

1.
Vasinonta
,
A.
,
Beuth
,
J. L.
, and
Ong
,
R.
,
2001
, “
Melt Pool Size Control in Thin-Walled and Bulky Parts Via Process Maps
,”
Solid Freeform Fabrication Symposium Proceedings
(
SFF
), Austin, TX, Aug. 6–8, pp.
432
440
.http://edge.rit.edu/edge/P10551/public/SFF/SFF%202001%20Proceedings/2001%20SFF%20Papers/49-Vasinonta.pdf
2.
Hrabe
,
N.
, and
Quinn
,
T.
,
2013
, “
Effects of Processing on Microstructure and Mechanical Properties of a Titanium Alloy (Ti–6Al–4V) Fabricated Using Electron Beam Melting (EBM)—Part 1: Distance From Build Plate and Part Size
,”
Mater. Sci. Eng., A
,
573
, pp.
264
270
.
3.
Dunbar
,
A. J.
,
Denlinger
,
E. R.
,
Gouge
,
M. F.
,
Simpson
,
T. W.
, and
Michaleris
,
P.
,
2017
, “
Comparisons of Laser Powder Bed Fusion Additive Manufacturing Builds Through Experimental In Situ Distortion and Temperature Measurements
,”
Addit. Manuf.
,
15
, pp.
57
65
.
4.
Heigel
,
J. C.
,
Michaleris
,
P.
, and
Reutzel
,
E. W.
,
2015
, “
Thermo-Mechanical Model Development and Validation of Directed Energy Deposition Additive Manufacturing of Ti–6Al–4V
,”
Addit. Manuf.
,
5
, pp.
9
19
.
5.
Dunbar
,
A. J.
,
Denlinger
,
E. R.
,
Gouge
,
M. F.
, and
Michaleris
,
P.
,
2016
, “
Experimental Validation of Finite Element Modeling for Laser Powder Bed Fusion Deformation
,”
Addit. Manuf.
,
12
(Part A), pp.
108
120
.
6.
Denlinger
,
E. R.
,
Heigel
,
J. C.
,
Michaleris
,
P.
, and
Palmer
,
T. A.
,
2015
, “
Effect of Inter-Layer Dwell Time on Distortion and Residual Stress in Additive Manufacturing of Titanium and Nickel Alloys
,”
J. Mater. Process. Technol.
,
215
, pp.
123
131
.
7.
Doubenskaia
,
M.
,
Pavlov
,
M.
,
Grigoriev
,
S.
,
Tikhonova
,
E.
, and
Smurov
,
I.
,
2012
, “
Comprehensive Optical Monitoring of Selective Laser Melting
,”
J. Laser Micro Nanoeng.
,
7
(
3
), pp.
236
243
.
8.
Cho
,
C.-H.
,
Hsieh
,
Y.-C.
, and
Chen
,
H.-Y.
,
2015
, “
Welding Pool Measurement Using Thermal Array Sensor
,”
Proc. SPIE
,
9609
, p.
960912
.
9.
Kruth
,
J.-P.
,
Mercelis
,
P.
,
Van Vaerenbergh
,
J.
, and
Craeghs
,
T.
,
2007
, “
Feedback Control of Selective Laser Melting
,”
Third International Conference on Advanced Research in Virtual and Rapid Prototyping
, Leiria, Portugal, Sept. 24–29, pp.
521
527
.
10.
Touloukian
,
Y. S.
, and
DeWitt
,
D. P.
,
1970
,
Thermal radiative properties: metallic elements and alloys
(Thermophysical Properties of Matter; the TPRC Data Series, A Comprehensive Compilation of Data), Vol. 7, IFI/Plenum, New York.
11.
Doubenskaia
,
M.
,
Pavlov
,
M.
,
Grigoriev
,
S.
, and
Smurov
,
I.
,
2013
, “
Definition of Brightness Temperature and Restoration of True Temperature in Laser Cladding Using Infrared Camera
,”
Surf. Coat. Technol.
,
220
, pp.
244
247
.
12.
Price
,
S.
,
Lydon
,
J.
,
Cooper
,
K.
, and
Chou
,
K.
,
2013
, “
Experimental Temperature Analysis of Powder-Based Electron Beam Additive Manufacturing
,”
Solid Freeform Fabrication Symposium Proceedings
(
SFF
), Austin, TX, Aug. 12–14, pp.
162
173
.http://sffsymposium.engr.utexas.edu/Manuscripts/2013/2013-13-Price.pdf
13.
Cheng
,
B.
,
Price
,
S.
,
Lydon
,
J.
,
Cooper
,
K.
, and
Chou
,
K.
,
2014
, “
On Process Temperature in Powder-Bed Electron Beam Additive Manufacturing: Model Development and Validation
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
61018
.
14.
Price
,
S.
,
Cheng
,
B.
,
Lydon
,
J.
,
Cooper
,
K.
, and
Chou
,
K.
,
2014
, “
On Process Temperature in Powder-Bed Electron Beam Additive Manufacturing: Process Parameter Effects
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
61019
.
15.
Yadroitsev
,
I.
,
Krakhmalev
,
P.
, and
Yadroitsava
,
I.
,
2014
, “
Selective Laser Melting of Ti6Al4V Alloy for Biomedical Applications: Temperature Monitoring and Microstructural Evolution
,”
J. Alloys Compd.
,
583
, pp.
404
409
.
16.
Lane
,
B.
,
Moylan
,
S.
,
Whitenton
,
E.
, and
Ma
,
L.
,
2015
, “
Thermographic Measurements of the Commercial Laser Powder Bed Fusion Process at NIST
,”
Rapid Prototyping J.
,
22
(
5
), pp.
778
787
.
17.
Lane
,
B.
, and
Whitenton
,
E.
,
2015
, “
Calibration and Measurement Procedures for a High Magnification Thermal Camera
,” National Institute of Standards and Technology, Gaithersburg, MD, Report No.
NISTIR 8098
.http://nvlpubs.nist.gov/nistpubs/ir/2016/NIST.IR.8098.pdf
18.
Montgomery
,
C.
,
Beuth
,
J.
,
Sheridan
,
L.
, and
Klinbeil
,
N.
,
2015
, “
Process Mapping of Inconel 625 in Laser Powder Bed Additive Manufacturing
,”
Solid Freeform Fabrication Symposium Proceedings
(
SFF
), Austin, TX, Aug. 10–12, pp.
1195
1204
.https://sffsymposium.engr.utexas.edu/sites/default/files/2015/2015-97-Montgomery.pdf
19.
Khairallah
,
S. A.
,
Anderson
,
A. T.
,
Rubenchik
,
A.
, and
King
,
W. E.
,
2016
, “
Laser Powder-Bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones
,”
Acta Mater.
,
108
, pp.
36
45
.
20.
del Campo
,
L.
,
Pérez-Sáez
,
R. B.
,
González-Fernández
,
L.
,
Esquisabel
,
X.
,
Fernández
,
I.
,
González-Martín
,
P.
, and
Tello
,
M. J.
,
2010
, “
Emissivity Measurements on Aeronautical Alloys
,”
J. Alloys Compd.
,
489
(
2
), pp.
482
487
.
You do not currently have access to this content.