The paper discusses novel computationally efficient torque distribution strategies for electric vehicles with individually controlled drivetrains, aimed at minimizing the overall power losses while providing the required level of wheel torque and yaw moment. Analytical solutions of the torque control allocation problem are derived and effects of load transfers due to driving/braking and cornering are studied and discussed in detail. Influences of different drivetrain characteristics on the front and rear axles are described. The results of an analytically derived algorithm are contrasted with those from two other control allocation strategies, based on the offline numerical solution of more detailed formulations of the control allocation problem (i.e., a multiparametric nonlinear programming (mp-NLP) problem). The control allocation algorithms are experimentally validated with an electric vehicle with four identical drivetrains along multiple driving cycles and in steady-state cornering. The experiments show that the computationally efficient algorithms represent a very good compromise between low energy consumption and controller complexity.

References

1.
De Novellis
,
L.
,
Sorniotti
,
A.
,
Gruber
,
P.
,
Orus
,
J.
,
Rodriguez Fortun
,
J. M.
,
Theunissen
,
J.
, and
De Smet
,
J.
,
2015
, “
Direct Yaw Moment Control Actuated Through Electric Drivetrains and Friction Brakes: Theoretical Design and Experimental Assessment
,”
Mechatronics
,
26
, pp.
1
15
.
2.
De Novellis
,
L.
,
Sorniotti
,
A.
, and
Gruber
,
P.
,
2014
, “
Wheel Torque Distribution Criteria for Electric Vehicles With Torque-Vectoring Differentials
,”
IEEE Trans. Veh. Technol.
,
63
(
4
), pp.
1593
1602
.
3.
Lu
,
Q.
,
Gentile
,
P.
,
Tota
,
A.
,
Sorniotti
,
A.
,
Gruber
,
P.
,
Costamagna
,
F.
, and
De Smet
,
J.
,
2016
, “
Enhancing Vehicle Cornering Limit Through Sideslip and Yaw Rate Control
,”
Mech. Syst. Signal Process.
,
75
, pp.
455
472
.
4.
Goggia
,
T.
,
Sorniotti
,
A.
,
De Novellis
,
L.
,
Ferrara
,
A.
,
Gruber
,
P.
,
Theunissen
,
J.
,
Steenbeke
,
D.
,
Knauder
,
B.
, and
Zehetner
,
J.
,
2015
, “
Integral Sliding Mode for the Torque-Vectoring Control of Fully Electric Vehicles: Theoretical Design and Experimental Assessment
,”
IEEE Trans. Veh. Technol.
,
64
(
5
), pp.
1701
1715
.
5.
De Novellis
,
L.
,
Sorniotti
,
A.
, and
Gruber
,
P.
,
2013
, “
Optimal Wheel Torque Distribution for a Four-Wheel-Drive Fully Electric Vehicle
,”
SAE Int. J. Passenger Cars-Mech. Syst.
,
6
(
1
), pp.
128
136
.
6.
Chen
,
Y.
, and
Wang
,
J.
,
2014
, “
Adaptive Energy-Efficient Control Allocation for Planar Motion Control of Over-Actuated Electric Ground Vehicles
,”
IEEE Trans. Control Syst. Technol.
,
22
(
4
), pp.
1362
1373
.
7.
Suzuki
,
Y.
,
Kano
,
Y.
, and
Abe
,
M.
,
2014
, “
A Study on Tyre Force Distribution Controls for Full Drive-by-Wire Electric Vehicle
,”
Veh. Syst. Dy.
,
52
(
Suppl. 1
), pp.
235
250
.
8.
Li
,
B.
,
Goodarzi
,
A.
,
Khajepour
,
A.
,
Chen
,
S. K.
, and
Litkouhi
,
B.
,
2015
, “
An Optimal Torque Distribution Control Strategy for Four-Independent Wheel Drive Electric Vehicles
,”
Veh. Syst. Dyn.
,
53
(
8
), pp.
1172
1189
.
9.
de Castro
,
R.
,
Tanelli
,
M.
,
Esteves Araújo
,
R.
, and
Savaresi
,
S. M.
,
2014
, “
Design of Safety-Oriented Control Allocation Strategies for Overactuated Electric Vehicles
,”
Veh. Syst. Dyn.
,
52
(
8
), pp.
1017
1046
.
10.
Wong
,
A.
,
Kasinathan
,
D.
,
Khajepour
,
A.
,
Chen
,
S. K.
, and
Litkouhi
,
B.
,
2016
, “
Integrated Torque Vectoring and Power Management Framework for Electric Vehicles
,”
Control Eng. Pract.
,
48
, pp.
22
36
.
11.
Johansen
,
T. A.
, and
Fossen
,
T. I.
,
2013
, “
Control Allocation: A Survey
,”
Automatica
,
49
(
5
), pp.
1087
1103
.
12.
Härkegård
,
O.
, and
Glad
,
S. T.
,
2005
, “
Resolving Actuator Redundancy—Optimal Control vs. Control Allocation
,”
Automatica
,
41
(1), pp.
137
144
.
13.
Bodson
,
M.
,
2002
, “
Evaluation of Optimization Methods for Control Allocation
,”
J. Guid., Control, Dyn.
,
25
(
4
), pp.
703
711
.
14.
Kang
,
J.
, and
Heo
,
H.
,
2012
, “
Control Allocation Based Optimal Torque Vectoring for 4WD Electric Vehicle
,”
SAE
Technical Paper No. 2012-01-0246.
15.
Xiong
,
L.
, and
Yu
,
Z.
,
2009
, “
Control Allocation of Vehicle Dynamics Control for a 4 In-Wheel-Motored EV
,”
IEEE Power Electronics and Intelligent Transportation System Conference
(
PEITS
), Shenzhen, China, Dec. 19–20, Vol.
2
, pp.
307
311
.
16.
Pennycott
,
A.
,
De Novellis
,
L.
,
Sabbatini
,
A.
,
Gruber
,
P.
, and
Sorniotti
,
A.
,
2014
, “
Reducing the Motor Power Losses of a Four-Wheel Drive, Fully Electric Vehicle Via Wheel Torque Allocation
,”
Proc. Inst. Mech. Eng., Part D
,
228
(
7
), pp.
830
839
.
17.
Yuan
,
X.
, and
Wang
,
J.
,
2012
, “
Torque Distribution Strategy for a Front- and Rear-Wheel-Driven Electric Vehicle
,”
IEEE Trans. Veh. Technol.
,
61
(
8
), pp.
3365
3374
.
18.
Chen
,
Y.
, and
Wang
,
J.
,
2012
, “
Fast and Global Optimal Energy-Efficient Control Allocation With Applications to Over-Actuated Electric Ground Vehicles
,”
IEEE Trans. Control Syst. Technol.
,
20
(
5
), pp.
1202
1211
.
19.
Chen
,
Y.
, and
Wang
,
J.
,
2014
, “
Design and Experimental Evaluations on Energy Efficient Control Allocation Methods for Overactuated Electric Vehicles: Longitudinal Motion Case
,”
IEEE/ASME Trans. Mechatronics
,
19
(
2
), pp.
538
548
.
20.
Tøndel
,
P.
, and
Johansen
,
T. A.
,
2005
, “
Control Allocation for Yaw Stabilization in Automotive Vehicles Using Multiparametric Nonlinear Programming
,”
American Control Conference
(
ACC
), Portland, OR, June 8–10, pp. 453–458.
21.
Xydas
,
E.
,
Marmaras
,
C.
,
Cipcigan
,
L. M.
,
Jenkins
,
N.
,
Carroll
,
S.
, and
Barker
,
M.
,
2016
, “
A Data-Driven Approach for Characterising the Charging Demand of Electric Vehicles: A UK Case Study
,”
Appl. Energy
,
162
, pp.
763
771
.
22.
Dimitrova
,
Z.
, and
Maréchal
,
F.
,
2016
, “
Techno–Economic Design of Hybrid Electric Vehicles and Possibilities of the Multi-Objective Optimization Structure
,”
Appl. Energy
,
161
, pp.
746
759
.
23.
Shabbir
,
W.
, and
Evangelou
,
S. A.
,
2014
, “
Real-Time Control Strategy to Maximize Hybrid Electric Vehicle Powertrain Efficiency
,”
Appl. Energy
,
135
, pp.
512
522
.
24.
Hou
,
C.
,
Ouyang
,
M.
,
Xu
,
L.
, and
Wang
,
H.
,
2014
, “
Approximate Pontryagin's Minimum Principle Applied to the Energy Management of Plug-In Hybrid Electric Vehicles
,”
Appl. Energy
,
115
, pp.
174
189
.
25.
Torres
,
J. L.
,
Gonzalez
,
R.
,
Gimenez
,
A.
, and
Lopez
,
J.
,
2014
, “
Energy Management Strategy for Plug-In Hybrid Electric Vehicles: A Comparative Study
,”
Appl. Energy
,
113
, pp.
816
824
.
26.
Wang
,
R.
,
Chen
,
Y.
,
Feng
,
D.
,
Huang
,
X.
, and
Wang
,
J.
,
2011
, “
Development and Performance Characterization of an Electric Ground Vehicle With Independently Actuated In-Wheel Motors
,”
J. Power Sources
,
196
(
8
), pp.
3962
3971
.
27.
Kohler
,
S.
,
Viehl
,
A.
,
Bringmann
,
O.
, and
Rosenstiel
,
W.
,
2014
, “
Energy-Efficient Torque Distribution for Axle-Individually Propelled Electric Vehicles
,”
IEEE Intelligent Vehicles Symposium
(
IVS
), Dearborn, MI, June 8–11, pp. 1109–1114.
28.
Dizqah
,
A. M.
,
Lenzo
,
B.
,
Sorniotti
,
A.
,
Gruber
,
P.
,
Fallah
,
S.
, and
De Smet
,
J.
,
2016
, “
A Fast and Parametric Torque Distribution Strategy for Four-Wheel-Drive Energy-Efficient Electric Vehicles
,”
IEEE Trans. Ind. Electron.
,
63
(
7
), pp.
4367
4376
.
29.
Tang
,
Y.
,
2013
, “
Method of Operating a Dual Motor Drive and Control System for an Electric Vehicle
,” Tesla Motors, Inc., Palo Alto, CA, U.S. Patent No.
US20130241445 A1
.http://www.google.com/patents/US20130241445
30.
iCOMPOSE
, 2013, “
Integrated Control of Multiple-Motor and Multiple-Storage Fully Electric Vehicles
,” accessed July 7, 2016, http://www.i-compose.eu/iCompose/
31.
Genta
,
G.
,
1997
,
Motor Vehicle Dynamics: Modeling and Simulation
,
World Scientific
,
Singapore
.
32.
Di Nicola
,
F.
,
Sorniotti
,
A.
,
Holdstock
,
T.
,
Viotto
,
F.
, and
Bertolotto
,
S.
,
2012
, “
Optimization of a Multiple-Speed Transmission for Downsizing the Motor of a Fully Electric Vehicle
,”
SAE Int. J. Altern. Powertrains
,
1
(
1
), pp.
134
143
.
33.
Domínguez
,
L. F.
,
Narciso
,
D. A.
, and
Pistikopoulos
,
E. N.
,
2010
, “
Recent Advances in Multiparametric Nonlinear Programming
,”
Comput. Chem. Eng.
,
34
(
5
), pp.
707
716
.
34.
Grancharova
,
A.
, and
Johansen
,
T. A.
,
2012
, “
Multi-Parametric Programming
,”
Explicit Nonlinear Model Predictive Control—Theory and Applications
,
Springer
,
Berlin
, pp.
1
37
.
35.
de Boor
,
C.
,
1978
,
A Practical Guide to Splines
,
Springer-Verlag
,
New York
.
You do not currently have access to this content.