Current approaches in computational design synthesis (CDS) enable the human designer to explore large solution spaces for engineering design problems. To extend this to support designers in embodiment and detail design, not only the generation of solution spaces is needed but also the automated evaluation of engineering performance. Here, simulation methods can be used effectively to predict the behavior of a product. This paper builds on a general approach to automatically generate solution spaces for energy and signal-based engineering design tasks using first-order logic and Boolean satisfiability. The generated concept model graphs (CMGs) are now in this paper automatically transformed into corresponding bond-graph-based simulation models. To do this, guidelines for creating partial simulation models for the available synthesis building blocks are presented. The guidelines ensure valid causality in the final simulation model. Considering the connections in the concept model graphs, the simulation models are automatically generated and simulated. The simulation results are then used to calculate different objectives, constraints, and performance metrics. The method is validated using automotive powertrains as a case study. One hundred and sixty-two different powertrain concepts are generated and evaluated, showing the advantages of electric powertrains with respect to CO2 emissions and the importance of considering intelligent control strategies in the future for hybrid ones.

References

1.
Pahl
,
G.
,
Beitz
,
W.
,
Feldhusen
,
J.
, and
Grote
,
K.-H.
,
2007
,
Konstruktionslehre
, 7th ed.,
Springer Verlag
,
Berlin
.
2.
Ehrlenspiel
,
K.
,
Kiewert
,
A.
, and
Lindemann
,
U.
,
2007
,
Cost-Efficient Design
,
Springer Verlag
,
Berlin
.
3.
Thomke
,
S.
, and
Fujimoto
,
T.
,
2000
, “
The Effect of ‘Front-Loading’ Problem-Solving on Product Development Performance
,”
J. Prod. Innovation Manage.
,
17
(
2
), pp.
128
142
.
4.
Shah
,
A.
,
Paredis
,
C.
,
Burkhart
,
R.
, and
Schaefer
,
D.
,
2010
, “
Combining Mathematical Programming and SysMl for Automated Component Sizing of Hydraulic Systems
,”
ASME
Paper No. DETC2010-28960.
5.
Leuppi
,
J.
, and
Shea
,
K.
,
2008
, “
The Hylomorhpic Project
,”
Arup J.
,
1
, pp.
28
30
.
6.
Chakrabarti
,
A.
,
Shea
,
K.
,
Stone
,
R.
,
Cagan
,
J.
,
Campbell
,
M.
,
Hernandez
,
N.
, and
Wood
,
K.
,
2011
, “
Computer-Based Design Synthesis Research: An Overview
,”
ASME J. Comput. Inf. Sci. Eng.
,
11
(
2
), p.
021003
.
7.
VDI-Fachbereich Produktentwicklung und Mechatronik
,
1993
, “Methodik zum Entwickeln und Konstruieren Technischer Systeme und Produkte,” VDI, Düsseldorf, Germany, Standard No. VDI 2221.
8.
Fachbach
,
B.
,
2011
, “
Anforderungen an die Konzeptphase aus Sicht der OEMs—Ergebnisse Einer Befragung
,” 4. Grazer Symposium Virtuelles Fahrzeug.
9.
Liu
,
Y.-C.
,
Bligh
,
T.
, and
Chakrabarti
,
A.
,
2003
, “
Towards an ‘Ideal’ Approach for Concept Generation
,”
Des. Stud.
,
24
(
4
), pp.
341
355
.
10.
Helms
,
B.
, and
Shea
,
K.
,
2012
, “
Computational Synthesis of Product Architectures Based on Object-Oriented Graph Grammars
,”
ASME J. Mech. Des.
,
134
(
2
), p.
021008
.
11.
Münzer
,
C.
,
Helms
,
B.
, and
Shea
,
K.
,
2013
, “
Automatically Transforming Object-Oriented Graph-Based Representations Into Boolean Satisfiability Problems for Computational Design Synthesis
,”
ASME J. Mech. Des.
,
135
(
110
), p.
101001
.
12.
Snavely
,
G.
, and
Papalambros
,
P.
,
1993
, “
Abstraction as a Configuration Design Methodology
,”
Adv. Des. Autom.
,
1
, pp.
297
305
.
13.
Ehrlenspiel
,
K.
,
2006
,
Integrierte Produktentwicklung: Denkabläufe, Methodeneinsatz, Zusammenarbeit
,
Carl Hanser Verlag
,
München, Germany
.
14.
Hubka
,
V.
, and
Eder
,
W.
,
1988
,
Theory of Technical Systems
, 1st ed.,
Springer Verlag
,
Berlin
.
15.
Paredis
,
C.
,
Diaz-Calderon
,
A.
,
Sinha
,
R.
, and
Khosla
,
P.
,
2001
, “
Composable Models for Simulation-Based Design
,”
Eng. Comput.
,
17
(
2
), pp.
112
128
.
16.
Borutzky
,
W.
,
2009
, “
Bond Graph Modelling and Simulation of Multidisciplinary Systems—An Introduction
,”
Simul. Modell. Pract. Theory
,
17
(
1
), pp.
3
21
.
17.
Sellgren
,
U.
,
1999
,
Simulation-Driven Design—Motives, Means, and Opportunities
,
KTH Stockholm
,
Stockholm, Sweden
.
18.
Moullec
,
M.-L.
,
Bouissou
,
M.
,
Jankovic
,
M.
,
Bocquet
,
J.-C.
,
Réquillard
,
F.
,
Maas
,
O.
, and
Forgeot
,
O.
,
2013
, “
Toward System Architecture Generation and Performances Assessment Under Uncertainty Using Bayesian Networks
,”
ASME J. Mech. Des.
,
135
(
4
), p.
041002
.
19.
Starling
,
A.
, and
Shea
,
K.
,
2005
, “
A Parallel Grammar for Simulation-Driven Mechanical Design Synthesis
,”
ASME
Paper No. DETC2005-85414.
20.
Wu
,
Z.
,
Campbell
,
M.
, and
Fernández
,
B.
,
2008
, “
Bond Graph Based Automated Modeling for Computer-Aided Design of Dynamic Systems
,”
ASME J. Mech. Des.
,
130
(
4
), p.
041102
.
21.
Canedo
,
A.
, and
Richter
,
J. H.
,
2014
, “
Architectural Design Space Exploration of Cyber-Physical Systems Using the Functional Modeling Compiler
,”
Procedia CIRP
, pp. 46–51.
22.
Shiau
,
C.-S.
,
Kaushal
,
N.
,
Hendrickson
,
C.
,
Peterson
,
S.
,
Whitacre
,
J.
, and
Michalek
,
J.
,
2010
, “
Optimal Plug-In Hybrid Electric Vehicle Design and Allocation for Minimum Life Cycle Cost, Petroleum Consumption, and Greenhouse Gas Emissions
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091013
.
23.
Shiau
,
C.-S.
, and
Michalek
,
J.
,
2011
, “
Global Optimization of Plug-In Hybrid Vehicle Design and Allocation to Minimize Life Cycle Greenhouse Gas Emissions
,”
ASME J. Mech. Des.
,
133
(
8
), p.
084502
.
24.
Hauffe
,
R.
,
Samaras
,
C.
, and
Michalek
,
J.
,
2008
, “
Plug-In Hybrid Vehicle Simulation: How Battery Weight and Charging Patterns Impact Cost, Fuel Consumption, and CO2 Emissions
,”
ASME
Paper No. DETC2008-50027.
25.
Bayrak
,
A.
,
Ren
,
Y.
, and
Papalambros
,
P.
,
2013
, “
Design of Hybrid-Electric Vehicle Architectures Using Auto-Generation of Feasible Driving Modes
,”
ASME
Paper No. DETC2013-13043.
26.
Bayrak
,
A.
,
Ren
,
Y.
, and
Papalambros
,
P.
,
2016
, “
Topology Generation for Hybrid Electric Vehicle Architecture Design
,”
ASME J. Mech. Des.
,
138
(
8
), p.
081401
.
27.
Wyatt
,
D.
,
Wynn
,
D.
,
Jarrett
,
J.
, and
Clarkson
,
P.
,
2012
, “
Supporting Product Architecture Design Using Computational Design Synthesis With Network Structure Constraints
,”
Res. Eng. Des.
,
23
(
1
), pp.
17
52
.
28.
ISO
,
2004
, “
Information Technology—Metadata Registries (MDR)—Part 1: Framework
,” International Organization for Standardization, Geneva, Switzerland, Standard No.
ISO/IEC 11179-1
.
29.
Münzer
,
C.
,
2015
,
Constraint-Based Methods for Automated Computational Design Synthesis of Solution Spaces
,
ETH Zürich
,
Zürich, Switzerland
.
30.
Jakumeit
,
E.
,
Buchwald
,
S.
, and
Kroll
,
M.
,
2010
, “
GrGen.NET
,”
Int. J. Software Tools Technol. Transfer
,
12
(
3
), pp.
263
271
.
31.
Jackson
,
D.
,
2002
, “
Alloy: A Lightweight Object Modelling Notation
,”
ACM Trans. Software Eng. Methodol.
,
11
(
2
), pp.
256
290
.
32.
Jackson
,
D.
,
2012
,
Software Abstractions: Logic, Language and Analysis
, 2nd ed.,
The MIT Press
,
Cambridge, MA
.
33.
Torlak
,
E.
,
2009
,
A Constraint Solver for Software Engineering: Finding Models and Cores of Large Relational Specifications
,
The MIT Press
,
Cambridge, MA
.
34.
Sörensson
,
N.
, and
Eén
,
N.
,
2005
, “
Minisat v1.13-a Sat Solver With Conflict-Clause Minimization
,”
SAT Competition
, St Andrews, Scotland, June 19–23.
35.
Biere
,
A.
,
Heule
,
M.
, and
van Maaren
,
H.
,
2009
,
Handbook of Satisfiability
, Vol.
185
,
IOS Press
, Amsterdam, The Netherlands.
36.
European Union
,
1970
, “
RICHTLINIE DES RATES vom 20. März 1970 zur Angleichung der Rechtsvorschriften der Mitgliedstaaten Über Massnahmen Gegen die Verunreinigung der Luft Durch Emissionen von Kraftfahrzeugen
,” European Commission, Brussels, Belgium, Standard No. 70/220/EWG.
37.
Bundesverband der Energie- und Wasserwirtschaft
,
e.V.
,
2013
, “
Datenerhebung 2012—Bundesmix 2012
,” Bundesverband der Energie- und Wasserwirtschaft, Berlin, Standard No. 21.08.2013.
38.
Cagan
,
J.
,
Campbell
,
M.
,
Finger
,
S.
, and
Tomiyama
,
T.
,
2005
, “
A Framework for Computational Design Synthesis: Model and Applications
,”
ASME J. Comput. Inf. Sci. Eng.
,
5
(
3
), pp.
171
181
.
39.
Falkner
,
A.
,
Haselböck
,
A.
,
Schenner
,
G.
, and
Schreiner
,
H.
,
2011
, “
Modeling and Solving Technical Product Configuration Problems
,”
Artif. Intell. Eng. Des., Anal. Manuf.
,
25
(
2
), pp.
115
129
.
40.
Münzer
,
C.
,
Helms
,
B.
, and
Shea
,
K.
,
2012
, “
Automated Parametric Design Synthesis Using Graph Grammars and Constraint Solving
,”
ASME
Paper No. DETC2012-70313.
41.
Münzer
,
C.
, and
Shea
,
K.
,
2016
, “
An Integrated Approach to Automated Synthesis, Simulation and Optimization of Energy and Signal-Based Design Concepts
,”
ASME
Paper No. DETC2016-59816.
You do not currently have access to this content.